




# **Different Types of LiDAR Users**

- Data collection
  - Fly
  - Process
  - Deliver
- Management
  - Store
  - Distribute
  - Update
- Use
  - Display
  - Query
  - Analyze

**ArcGIS** 







## **LiDAR Input Data Formats – ASCII & Binary**

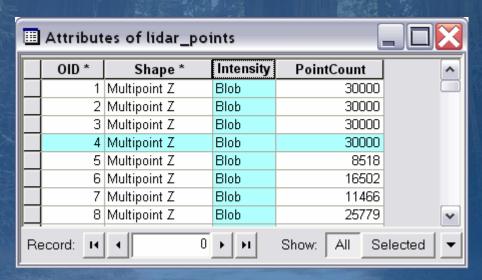
- XYZ, XYZI, GENERATE Format
  - -3-D points, lines, polygons
  - Loaded using ASCII 3D To Feature Class geoprocessing tool

- LAS Format
  - -LAS files are industry standard binary format for LiDAR
  - Loaded using LAS To Multipoint geoprocessing tool





#### **Geodatabase Solution**

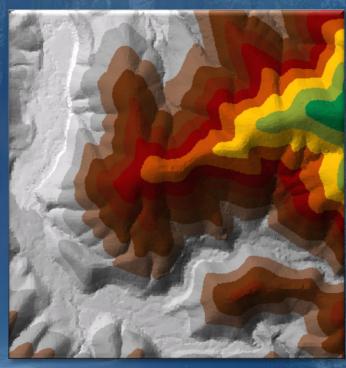

- Import source LiDAR measurements into geodatabase
  - Do not work directly on LAS lidar files
- Leverage geodatabase capabilities for efficient storage and management of lidar point clouds
- Benefits:
  - Multipoint technology
  - Pyramids
  - Multiuser capabilities at enterprise level databases
  - Fast retrieval and display of point clouds





# Handling LiDAR (LAS) Attributes

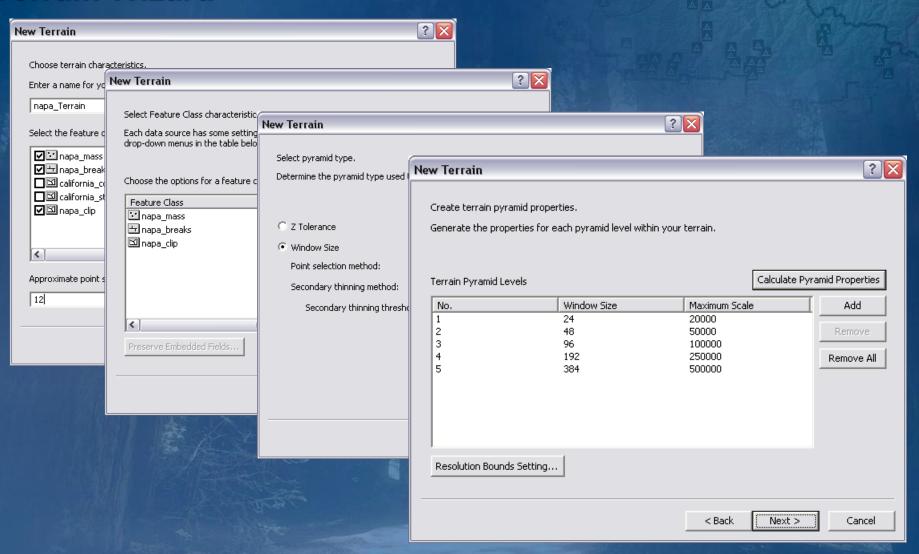
- Per point attributes (e.g. return number, class code) optionally stored in BLOBs
- A separate BLOB field is used for each attribute
- Array of values with one-to-one correspondence with a set of grouped points is stored with points in same database row








#### **Terrain Dataset**


- A Terrain is a multi-resolution surface created from measurements stored in feature classes and managed in the geodatabase.
- Typical applications:
  - Topographic mapping
  - Bathymetric mapping
- Typical data sources:
  - Photogrammetric data
  - LIDAR
  - SONAR







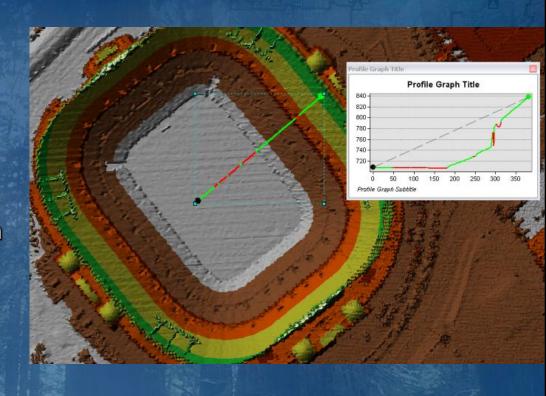
## **Terrain Wizard**







# **Terrain Editing**

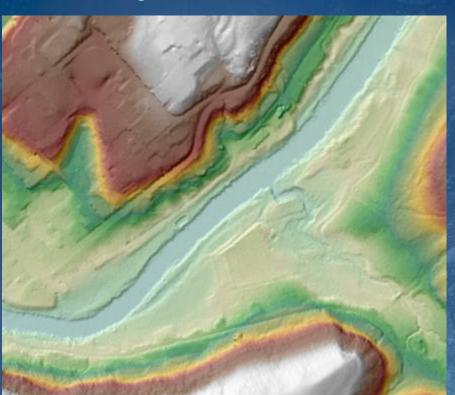

- Updates accomplished through edits to source measurements
  - Coarse grained area operators to append, remove, replace mass points
  - Standard/custom edit tools (e.g. ArcEditor) used to modify polylines, polygons, spot heights
  - Terrain rebuild based on dirty-areas
- Support for versioning in SDE





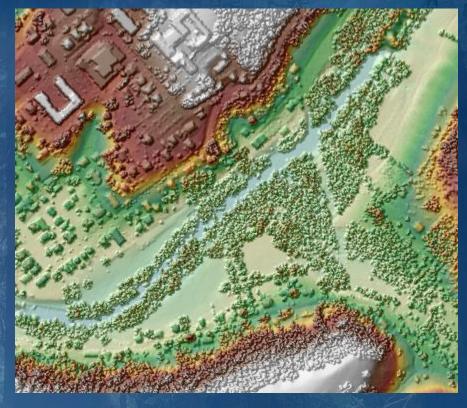
# **Analysis Tools on LiDAR**

- QA/QC lidar data
- DEM / DSM creation
- Slope
- Aspect
- Contours
- Surface differencing
- Intensity image generation
- Estimating Forest Canopy
- Data area delineation
- Thinning / reducing noise
- Spot interpolation
- Profiling









## Common Analysis: Creating Raster DEMs and DSMs

**Digital Elevation Model** 



Bare earth surface made using only ground hits.

**Digital Surface Model** 



Includes ground, trees, and buildings made using first returns.





#### **Best Practices**

- LAS Over ASCII
- Use File or SDE GDB (Personal 2GB Limit)
- Consider SDE for large datasets (> 1-2 billion points)
- Terrain must be stored in a feature dataset
- No Geographic Coordinate Systems
- Use Consistent Units (x, y, and z)
- Use Contiguous Datasets
- Breakline Enforcement
- Use ArcGlobe for LiDAR derived GRIDs Workflow for large GRIDs:















## Performance/Size Estimates (ArcGIS 9.3)

- Import:
  - 800 million LAS points per hour
- Terrain pyramid build:
  - 80 million points per hour using z-tolerance filter
  - 400 million points per hour using window size filter
- Storage:
  - 150 million points (geometry only) = 1GB
  - Terrain pyramid will be roughly same size as source multipoint feature class

Timed using Dell Precision M6300 Intel Core2 Duo 2.60 GHz CPU 4GB RAM Reads/writes using same drive File Geodatabase





